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Abstract :  We performed the time-dependent linear response approximation within the framework of the relativistic 

density functional method (DFM) the self-consistent calculation for Radon and computed total cross-section for the 

photon energy range 7-28 eV. The large difference between the results obtained from IPA-model and the present 

time-dependent response model is clearly seen from the graph. The large peak due to the ionization from 6p1/2 → d3/2 

in the IPA-model is marked significantly due to polarization effect incorporated in the time-dependent response 

model. 
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I. INTRODUCTION 

Calculation of photoionization cross-sections of atoms and ions are useful in a variety of investigations in 

plasma physics ,atomic physics and flashlamp photopumping schemes for x-ray lasers. The existing 

calculations of photoionization cross-sections using the single electron or the independent particle model 

(IPM) ,the energy-levels, and wavefunctions of the atom or ion are first calculated using the Hartree-Fock 

(HF) method. The interaction of the incident electromagnetic radiation with the atom (or ion) is treated via 

the first order perturbation theory. For many electron atoms and ions with a large number of bound electrons, 

substantial discrepancies are found between experimental and IPM-data [1]. 

Here, we used the time-dependent linear response approximation within the framework of the relativistic 

density functional method (DFM) [2, 3, 4] to treat the problem of photoionization. This method incorporates 

certain advantages over the HF-method. In the density functional method, one deals with a set of local 

equations only that  leads to computational simplicity and  fairly accurate atomic energy levels, wave 

functions, etc. are obtained. The computational simplicity is even more apparent in the case of relativistic 

DFM verses relativistic HF-methods. In the DFM, correlation effects of the bound electrons in the atom are 

accounted for in a simple way via the correlation potential. The Hartree-Fock method, on the other hand, 

does not take into account electron correlation, although it accounts for non-local exchange effects 

appropriately.   

The independent particle method does not take into account the polarization effect of the atom brought 

about by the incident time-varying radiation field. In the linear response method within the density functional 

method, this is treated adequately – as will be seen from comparison with the experimental data. In most 

experimental situations, the incident radiation (from synchrotron sources or lasers) have field strengths small 

compared to the atomic field strengths. For those experimental conditions, the present model based on linear 

response is adequate and useful. 

Photopumping scheme for x-ray lasers, population inversion of excited ionic levels, computation of 

opacities of plasmas for diagnostic and target response effects require calculations of photoionization and 

photoexcitation cross-sections and rates data as input. Accurate calculations are necessary for interpreting 

experimentally available data on cross sections. So, there is a need for relativistic modeling of these 

processes in order to generate accurate data over a wide range of photon energy for a variety of atoms and 

ions. The present model provides such a tool and its usefulness will be discussed in subsequent sections.  

We will present result of photoionization cross-section of atom in a dense plasma medium and examine 

the modification of cross-sections due to the plasma environment. 

Due to the lack of experimental data, the photoionization cross sections of radon were known mainly from 

theoretical works.  
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Theoretical methods [9, 8, 10, 5,7] like MCDF, R-matrix, DFM etc, have proven to give accurate 

photoionization cross section data at high photon energy, far from the thresholds, but give poor results near 

thresholds where resonant structure. P. Quinet and co-workers reviewed the recent advances in the 

determination of atomic parameters for modeling K lines in cosmically abundant elements [6].This work has 

included the effect of radiation damping, but takes only into account the photoionization from ground state, 

thus neglecting any contribution from the metastable states. 

 

II. THEORY : [METHOD OF CALCULATION] 

Using the local density functional method in the first part of the calculation of energy-level spectrum 

and the wave functions of the particular atom of specific configuration were done. To treat many-electron 

atoms (with high Z) appropriately, relativistic DFM equations were used. In this method, the following set 

of equations were solved self-consistently: 
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where,  ρ r  is the electronic charge density of the atom, α  and β are the Dirac matrices, if ’s are the 

integral occupation factors corresponding to the number of electrons in each state  ψi r  with corresponding 

energy eigenvalue iE . The atomic potential  ru  contains, in addition to the nuclear and the electrostatic 

Hartree term, a contribution arising from the electron exchange and correlation effects. Let us note that the 

use of integer occupation factors if ’s for the given configuration distinguishes this model from the “average 

atom model” where the occupation factors are taken to be those given by the statistical Fermi distribution 

function. 

 The orbital functions are four-component spinors. They are split into major and minor components: 
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where A and B are major and minor components of the radial functions and   jlm r  and  jl m r  are 

two-component Pauli spinors with the indicated numbers. The various quantum numbers are related by - 
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The differential equations for A and B (in matrix form) are:  
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 In equation (2), XC  is the exchange-correlation energy of the electrons. In actual calculation, 

Gunnarsson-Lundquist (G-L) form [3] for exchange-correlation energy and potential was used. It is well 

known that reliable atomic data is obtained from the use of G-L exchange-correlation. Equation (1)-( 6) are 

solved numerically to self-consistency to obtain the wave functions iψ ’s, the binding energies of each 

orbital iE , the atomic charge density  rρ  and the self-consistent potential  ru . 

 Now consider the effect of an incident time-varying radiation field   tieEtE 
0  on the atom. It 

induces a time-dependent atomic density deviation,  t,δ rρ , causing a time-dependent polarization effect. 

For the linear response method used here, it is convenient to work with the Fourier transform: 
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The net induced density due to the external plus the induced potential is  

 

                 rrrrrr   dVVρ indextind  ,,,,χ,δ      ................. (8) 

 

where the induced potential is given by  
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The response function is given by   
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and thus involves the wave functions and energy levels of the atoms. The Green’s functions are solutions of 

the inhomogeneous Dirac equation 
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In actual calculation, angular decomposition of the Green’s function in terms of spherical harmonics is 

done and the radial part is treated separately as follows: 

The Green’s function G in equation (11) has 16 components, which are represented in matrix form  
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The angular decomposition of various terms are  
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The radial part  ,G E r r are solutions of the radial inhomogeneous Dirac equation  
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jlW  is the Wronskian 
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2v  are major and minor component radial functions that are real and regular at r = 0. 

 rjl

1v  and  rjl

2v  major and minor comment radial functions which (for E > c2) are complex and obey 

outgoing wave boundary conditions at r = ∞. The phase for 1v jl  and 2v jl   are real and decay exponentially at 

large radii. 

With the above representations, the polarizability  χ , ,r r  is given by   
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when rr  , and r and rare interchanged on the right  side of equation (14) when  rr  . The index 

i stands for the quantum numbers (n, l1, j1, s1,) of a bound state and fi fore the occupation factors. The 

summation is over all indices except I and over both + ω and – ω. For the case of –ω, the complex 

conjugates of all outgoing waves in equation (14) are to be used. Angular momentum coupling coefficients 

are expressed in terms of Wigner 3j and 6j symbols.  

The frequency dependent polarizability  α  is the ratio of the induced dipole moment to the external 

field: 

      rrα dρZ
E

e
  ,δ

0

       ................. (15) 

Note that  α  like  ,δ rρ  is complex. The induced density deviation (and also the corresponding 

induced potential) can have a phase difference with respect to that of the applied external field. Once  α  

is determined, the photoabsorption cross-section    of the atom is obtained form: 
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Partial cross section for comparison with IPA -model 

In order to see the connection with the IPA-model, consider the partial cross-section due to 

photoionization from a specific bound state  riψ  to a final continuum state  rfψ . 

The initial atomic state is represented as  
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and the final continuum state with wave function K and energy ε as  
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The complex coefficients Al’s are found by requiring  rfψ  to behave asymptotically as an incident 

plane wave plus a spherical wave. Then the partial cross-section σnl  is shown to be  
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where 000 lll   is a Clebsch-Gordan coefficient. 

 

In (19), VSCF (r, ω) is a frequency dependent complex self-consistent potential. Note that, if  VSCF (r, 

ω) is replaced by the usual dipole moment operator, one obtains the conventional or independent particle 

approximation(IPA) result. In actual calculations, both bound and continuum wave functions are generated 

numerically using the Numerov method for integrating the Dirac equation. Let us also note that the real and 

imaginary parts of the self-consistent final contribute to the partial cross-section without interference. 

Computations were performed for both the conventional independent particle model and the time-dependent 

linear response to density functional method for comparison purposes.          

 

III. RESULTS & DISCUSSION 

In the time-dependent response model for Radon (Z = 86), relativistic effects are significant.  So the 

Dirac equation approach in our model is suitable. We performed self-consistent calculation for Radon and the 

computed total cross-section is plotted in Fig.1 for the photon energy range 7-28 eV. The large difference 

between the results obtained from IPA-model and the present time-dependent response model is clearly seen 

from the graph. The large peak due to the ionization from 6p1/2 → d3/2 in the IPA-model is masked 

significantly due to polarization effect incorporated in the time-dependent response model. No experimental 

data is available for the case of Radon. However, in view of the good agreement between experimental data 

and the results of time-dependent response model, it is expected that future experimental measurements for 

Radon in this photon energy range will be in close agreement with these calculated cross-sections. 

The result presented above is for single atoms without the effect of the plasma environment – as 

appropriate for very low density plasmas. For high density plasmas, however, effects due to screening shifts 
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of energy levels, modification of wave functions of bound (particularly the upper levels) and continuum wave 

functions as well as potentials of the ion embedded in the plasma have to be considered. 

For proper treatment these effects, the self-consistent density functional method (DFM) at finite 

temperatures [5] should be used. The application of this method requires iterative numerical solution of 

Schrödinger equation involving the complete set of bound and continuum wave functions for the multi-

electron ion and construction of effective potential inclusive of plasma screening and electronic exchange 

correlation effect in each interaction. For our present purpose, we adopted the following simplified approach 

for computational simplicity. For a given plasma density and temperature, we represent the long range part of 

the effective potential in the Debye-screened form. The inner part of the effective potential was constructed 

by numerical integration of the Hartree term with the electron density distribution calculated using the bound 

state wave functions. 

 

Fig.: Photoionization cross section (PICS) of Radon (Rn) 

  Independent Particle Model (Ref.01) 

  Time- dependent Density Functional Calculation (Present Result) 

 

IV. CONCLUSION 

It is demonstrated that the time-dependent linear response method within the framework of local 

relativistic density functional theory can provide reliable atomic data for various atoms and ions of 

experimental interest. This model is particularly useful in those situations where conventional independent 

particle models fail to provide accurate data. The mechanism of time-dependent polarization of the atom is 

seen to be important in describing the observed results. As a practical point, the computer code based on the 

time-dependent model is fast and efficient, capable of generating a large number of data in a short time (for 

example , cross-sections for 10 photon energies for a medium-Z atom takes about 3 minutes of c. p. u. times 

on a Cray-XMP computer). The present method is capable of treating large complex atoms  with high-Z for 

which relativistic effects are important. Let us point out that if the applied radiation field strength is very 

high, so that it is comparable or larger than the atomic field strength, new extensions or developments of the 

present model is necessary to treat those conditions. Full numerical solution of time-dependent density 

functional method (beyond the linear response approximation) would be one suitable to use in those cases. 

Work in this direction in planned for future.     

  With reference to the calculations for the different plasma conditions, let us point out that the Debye-

screened form for the long range part of the potential may not be adequate for the high-density plasmas. For 

more relativistic calculation, it is necessary to use fully self-consistent finite temperature density functional 
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method for those plasma conditions. Also, the effect of exchange and correlation for plasma electrons 

become important at high densities. The present approximate scheme is used at present for computational 

simplicity. However, the results shown here clearly indicate that with increasing plasma density, the 

photoionization cross-section and rates of the ions forming the plasma can be substantially modified. 

Accurate modeling of atomic properties for dense plasmas, therefore, requires that the effect of the 

surrounding plasma should be properly included in the calculation. 
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